Splitting criteria for vector bundles on higher-dimensional varieties
نویسندگان
چکیده
منابع مشابه
Splitting Criteria for Vector Bundles on Higher Dimensional Varieties
We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on a class of smooth complex projective varieties of dimension ≥ 4, over which every extension of line bundles splits.
متن کاملA Splitting Criterion for Vector Bundles on Higher Dimensional Varieties
We generalize Horrocks’ criterion for the splitting of vector bundles on projective space. We establish an analogous splitting criterion for vector bundles on arbitrary smooth complex projective varieties of dimension ≥ 4, which asserts that a vector bundle E on X splits iff its restriction E|Y to an ample smooth codimension 1 subvariety Y ⊂ X splits.
متن کاملA Few Splitting Criteria for Vector Bundles
We prove a few splitting criteria for vector bundles on a quadric hypersurface and Grassmannians. We give also some cohomological splitting conditions for rank 2 bundles on multiprojective spaces. The tools are monads and a Beilinson’s type spectral sequence generalized by Costa and Miró-Roig.
متن کاملVector Bundles over Analytic Character Varieties
Let Qp ⊆ L ⊆ K ⊆ Cp be a chain of complete intermediate fields where Qp ⊆ L is finite and K discretely valued. Let Z be a one dimensional finitely generated abelian locally L-analytic group and let ẐK be its rigid Kanalytic character group. Generalizing work of Lazard we compute the Picard group and the Grothendieck group of ẐK . If Z = o, the integers in L 6= Qp, we find Pic(ôK) = Zp which ans...
متن کاملEquivariant Vector Bundles on Certain Affine G-Varieties
We give a concrete description of the category of G-equivariant vector bundles on certain affine G-varieties (where G is a reductive linear algebraic group) in terms of linear algebra data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2011
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2011.252.19